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Comparison of Two Numerical Models on Photosynthetic Response 
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A multiple-regression model is presented for estimating the effect of major air pollutants on net photosynthetic rate 
(Pn) of Quercus mongolica leaves, of which visible injury is not shown. Photosynthetic capacity was found to be pri- 
marily a function of PPFD, air temperature Or) and ambient ozone (O:~) concentration. The negative direction of pho- 
tosynthetic capacity response to O~ concentration indicates a potential growth reduction of Q. mongolica due to 
ambient O~ concentration in the urban areas of Korea. The model was compared with a non-linear regression model 
including the same variables. We assessed the contribution of variables to two two models of ambient O~ affecting Pn 
of Q. mongolica leaves. The mean Pn difference between the models with and without ambient O:~ in the multiple- 
regression was smaller than that in the non-linear regression. The relative c(mtributions of ambient O~ to multiple- 
regression and non-linear regression were 12.6% and 5.6%, respectively. The results indicate that multiple-regression 
models can be applicable for qualitative or quantitative assessment of the effect of air pollutants on Pn response of 
plant leaves, of which visible injury may not be shown in situ. Also, the assessment of ecophysiological effects using 
numerical models will have a degree of uncertainty associated with the measuring time/period of the field data used 
in the modelling, as well as the numerical structure of the models. 
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Aml)ient O~ with ()lher t)h()t()(:hemi(:al ~)xidanls 
has been kn()wn Io directly int]i('l f()liar injury and 
premature loss (Heck el al., 1982, 198}; Reich and 
Amundson, 1984, 1985; Reich an(I Ross()ie, 198.3; 
Hinri(hsen, 1987; Kim and Kim, 1997). Also, O~ 
exposure in combinati(~n with acid misl ()r ing may 
increase nutrient leaching from le, wes ()r needles, 
and the resulting Mg and Ca defi(:iencies reduce 
phot()synthesis an(t I)i()mass pr()du(li~n both in the 
canopy and in root syslems (Prinz, 1()87; O~ok and 
Iohns()n, 1989; Rhyu and Kim, 1994a,b). Although 
aml)ient (.)} cannot explain all the characlerislics and 
lhe causes ()f re(:ent forest decline, il hag I)een 
regarde(I as the primary (ause in central Europe, 
North America and Asia (Heck et al., 1984a,I); Millet, 
1989; Kim anti Kim, 1997). In Iacl, when visible 
injury ol plants is not sh()wn, it is (lift|cult 1o detect 
and quantify the effects of air pollutants (,~ plant 
reslx)ns(.. Thus, we have been trying to w~rify and 
quantify the effects ()f ()~ with acid misl or i~)g wilh 
numerical models using ecophysi()l()gical (lata as a 
measure of tree response. These alternl}L'~ may have 
the advantage that the effe(:ts {)f ,fir pollulants ()n 
plant (:an I~ verified in situ. 
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Krupa and Ki(kert [1987) reviewt.d many numeric:al 
models l:K,tween air pollutant exposure and vegeta- 
l it)n resp()nse. AI~). various m, xlel,, haw, been (level- 
(~l}(,cl l~)r trees anti crop species to simulate lhe 
(hange of primary l)rodudioll l)y the air pollutants 
(l(e~ch et al., I (19(); Moklau el at., 1991 ; Mohren el 
al., 1992; Melclahl el al., 1992; krupa el al., 1095: 
kim an(l Kim, 1997). llere, we hy to dire(:tlv (om- 
pare lw,~ kinds of numerical m()dels used frequently 
in lhe an,.dyses ()f plant e(()physiol()gical resD)nses 
aff('('.led by air ix)llulanls. We d~,w,lolx,d a multiple- 
reglessi{)n model using dimati( and anthr()pogenic 
fa(1ors affecling Pn and (:i)ml)ared it with non-linear 
r{,gtessi~)n model used by Kim an(l Kim (1997). First, 
fi)r dew,l()l)ing lhe multiple-r(-,gression model, various 
sl,mstk-al meth~(Is were (arried ~,ut, such as ridge 
reglession, and forward stepwise ~lecti()n by the 
leasl-.~.tuares melhq)(| (Meyers, 19()0; SAS, 1993). T() 
esiiinale and (ompare the mean I)n difference in 
(.a( h nlodel, the mean value diviiled by the sum of 
the Pn differs,n( e between the mo(lels with and with- 
(~ul air ix)llulants by the number ~f observations, the 
I)~)~ ~tstra I) ant l i,lckknife pr()~{,(luff~s were used for the 
tw(, models, resl)e(.lively, lhe~,e procedures haw~ 
he(,n used to eslimate the l)re( isi,)n of various similar- 
ily measure% in(;luding measures of population 
gr()wth tale (Brdult and CasweJl, 1993), diet similarity. 
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(Smith, 1985), community similarity (Smith et al., 
1986) and niche ()verlap (Manly, 1990). Recently, 
they have been preferred as very useful D)wefful 
analysis techniques. 

The purl:x)ses of this paper are: 1) to verify and 
quantify the effects of major air pollutants with 
numerical m(xtels using ecoph~iological data such as 
Pn (net photosyntheti(" rate), and 2) to c()mpare the 
contribution of air pollutants affecting Pn of Quercus 
mongolica leaves to the two m(xlels, and to compare 
the numeri(:al charaderistics of the two m~)dels. 

METHODS 

Leaf Gas Exchange and Air Pollutants 

Q mongolica trees aix)ut 50 years in age, 15 m in 
height, 19 cm in mean diameu~r at the breast height, 
and at a density of about 950 trees per ha were usc<t 
as material plants. These were growing al Mt. Nam~n 
Park (37"33'N, 127"00'E, 250 m abow; sea level), a 
public natural park of Seoul, Korea (Kim and Kim, 
1997; Hong and Nakagoshi, 19()8). 

Carbon dioxide uptake of leaves was measured 
with a portable infra-red gas analyser (IC.A2, ADC, 
UK) connected to a leaf (:hamber with an integral 
humidity sensor, thermistor and quantum sensor 
(PLC, ADC). Air was supplied to the leaf chamber 
from a stabilized collection p()int placed outside the 
canopy and the flow rate measured with an air flow 
pump and mass flow meters/controllers (ASU, ADC). 
Uptake rates of CO., were calculated using the equa- 
tion of Long and Hallgren (1985). Measurements 
were made at monthly intervals from June to Septem- 
ber 1993 in situ. In each measurement, ten leaves, 
which were perfectly expanded at the ()uter layer of 
canopy from five individuals, were selected at random. 

The hourly average (:oncentralions of rsP (t()tal sus- 
pended particulate), SOz, NO. and O} recor(led at a 
the National Air Pollution Monitoring Station at 
nearby Hannam-dong in Seoul were used as the data 
of air pollutants. 

Statistical Analysis 

The contribution of climate factors such as hourly 
average PPFD and air temperature and air pollution 
factors such as hourly average TSP, SO 2, NO, and O:~ 
concentrations to Pn of Q. mongolica leaves were 
analyzed by multiple-regression analysis (Meyers, 
1990). 

In multiple-regression analysis, the strong collinear- 
ity among the independenl variables prevents ordi- 
nary least squares from providing meaningful estimates 
of lhe moclel parameters and in detecting multicol- 
linearity the diagnosis involved `several aiding proce- 
dures (Meyers, 1990): lhe eigenvalue (or ratio) to 
assess the seriousness of a particular dependency, the 
variance proportions to signify what variables are 
inw)lved in the dependency and to what extent, and 
the w~riance inflation facto~ (VIFs) to aid in determin- 
ing the clamage to the individual coefficients. Multi- 
collinearitv can be measured in terms of the ratio of 
the largesl Io the smallest eigenvalue, e.g. when the 
condition number of the correlation matrix exceeds 
1,000 one should be concerned about the effect of 
multicollinearity. It is generally accepted that if any 
VlF exceeds 10, a more suitable method should be 
c'onsidered. A small eigenvalue (serious linear depen- 
dency), accompanied by regressors with high variance 
prop~)rtions, represents a dependency involving the 
regressors, and the dependency is damaging to the 
precision ot estimation ()f the c oel:ficients. 

Ridge regression may provide better parameter esti- 
mates when multicollinearity is detected in multiple- 
regression m(~Jels. The multiple-regression model is 
modified by adding an extra parameter, k, which limits 
the length ~)f the regression c~)efficient vector (Hoed 
and Kennard, 1970). The analysis is based on the 
change in (:oefficient wtlues as a function of k (the 
ridge traceL The variables are selected from the 
results o! ridge regression. 

We also used forward slepwise .selection by the 
least-.~tuares method (SAS, 1993). The forward selec- 
tion technique begins with no variables in the model. 
This calculates F statistic3 refle(:ting a variables contri- 
bution t() the model if it is included. These F statistic~ 
are compared to the 5% significance level for entry 
into the m(~|el. If no F statisti( has a significance level 
greater than the 5% level, f()rward stepwise selection 
stops. Otherwise, forward stepwise selection adds the 
wlriable that has the largest t statistic to the model. 
The model selection criteria are the coefficient of 
determination ' ' " " (R-) or Mallows C,, stat0sl0c (Mayers, 
1990). R z is a measur( of the models capability to fit 
the present data. However, the insertion of any new 
regressor into a model cannot bring about a decrease 
in R 2. When (:l~ is graphed with p, the model where 
Cp first approaches p is recommended. When the 
right m(~lel is chosen, the parameter estimates are 
unbiased, which is reflected in C~, nearing p. 

For the selected model, analysis of the residual is 
carried out to detect and as.~ess the degree of discrep- 
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Table 1. C( )rrelah( )n ('oeffi(:ienls ani()ng Ih(, Pn and Ill(, six i)r(,(ii(:l(,r v,, ial)h,.~ u.~(,d :n r(,gr(,~q()n ,tn,ilv~i~ h --:()8). ISl)=lohll su~- 
I~.'n(led I)arli(t,lah'; PPFI).:l)hol()synlh(,li( ph()t()n Ilux (l(-'nsily ] "  air  l(tnllx,r, llur(:; Pn=:Nel a~infil'ali()n rah,. 

[SI ) In(ISP) ()  In(().) S(),  In(S(),) N ( ) ,  In(N~),) I)PH) In(Pl'rl)) 1 In(T) 
( ' )~  -0.1189 0.1 22 
In(C) .) -4).()81~ ().122 
S(), 0.74()" "* (.).5(,8 ~ ~* -4).2 ~ I -4).27()" 
In(S().) ().()~;1 *~'~ 0.527*~*-().212--1).2~4 ~ 
NO, 0.6()2 "~* 1).1)53":'*-'().0(13 -11.072 1).418*"* 
In(N-O:) 0.6(.)2"** 0.647 ' ~  ().()9.;- l). l) l i)  i).407"** 
t)I)FD --I).111 .~ {1.1 (13 -0.(i()() it).()| () i ).0()() 
In(PPtD) -0.O10 ().()(,2 ---().21(, -0.123 )).0()'; 
] -41.1)71) 1).I~')2 ( ) . I ( ) 4  1).,).5.'; "-'() .34()** 

In(T) ..-0.058 (1.1 (,7 (). 1()8 0.257 - ().,}';..)*~ 

Pn ().().~9 11.1 ltJ -4). }(F) -4) .2)7  (1.'15 (1 

0.428 ' " "  
0.444' ' ' 
O.Oh(, --(I.214-() I ~7 
0.'I 18 --(l .12()-. l)  I~12 

�9 -0 .3  }6"*  - - ( ) . ( )22  ().(1(14 O.'i()i:l *:) ,  l)..r'~';l)~"* 

�9 -0..}'}~1 ~' ().fill} 11()19 1).343" *':' ().f;2~, ~ ' *  

-l).l':,>~ ._().().}r.~ ().(F;I ().()9"}*"* 1 1 . 8 4 1 ' ' *  0 .481 "~* ( ) . 4 6 " I * "  

* P < . . 0 ; ;  * *  I , < 0 . ( , l :  , - - 3 ; : T ~ i T ; .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ancy belween the model assum(,(I an(t Ihe (iala 
observed. 

The ,x lepen( lence ()f residuals was (:he, ked t)y 
I)urbin-Wat~)n lesl (SAS, 1993 L Th(, aim ()f Ihis t('s! is 
I() che(k whelher ()r nol Ihe err()rs hay(' first-or(ler 
aut()(orrelati()n. II the Durhin-Wals,)n slalislic ((1) is 
( Io.~ to 2, it is suggested lhal lhe errors (Io not have 
first-order auto,.orrelalion. The h( ,mogen(,( ,us vari- 
ance ()f resi(lual.~ was check(-,(l hy residual againsl l)r( ,- 
dicle(l value l)h)l (.gAS, 199 } ) .  If lh(, l)h)l in(li(:ali,s a 
ran(h)m pallern ar()un(I zer() wi lh  no (h'le(hll)le 
Irend, fi le h( )m( )gene( )us variance as.~unli)li()n ()f Ill(' 
errors are a(c ( ,p r ,d ,  l h ( ,  n()rmali ly i)f Ill(, (,lr()rs was 
(:hecke(I by Shapiro-W'ilk statiMi(: ~Vl, fi (Shal)ir()an(l 
Wilk, 1'}65). l h e  slalisli(: (~$~) (an (l(,l(,rmine whether 
to reje(t the, null hyp()thesis ()f)l()rnlali ly. II is ()nly 
nec:essary t() examine the l)r()l)al)ililv as~)ciale(l wi th 
I he test gtatisl ic. This pn )l)(il)i li b, is ( h,s( :ri bed I ) < W fl )r 
the test. If this valt,e is less lhan th(' (ho~,n level, then 
lhe null hypolh(~sis is r(,j(,(led and we ('an (onclu(le 
lhat the data (h) n()l c()m(-, lronl a n()rmal (l iqribuli()rL 
] h e  W qalisli(, is lhe ratio ()f lhe lx,sl e~timal(., ()f lhe 
variano, to the usual <()rre(.le(l sun] ()f squares ('sli- 
malor (d" Ihe variance. 

For a lesl of Ihe null hylx)lhesis ()f !t~(: ()l)~,n,ed 
value and the v, llue l)redicted by lhe s(~le(l('(l multi- 
ple-regressi()n (II,. : p,i = ()), lhe l-l('.q is carried ()ul 
(SAg, 1993). 

C o m p a r i s o n  o f  T w o  N u m e r i c a l  M o d e l s  

Kim and Kim !1!)97)(lev(,Ioi)ed a n()n-linear regr(,.~-. 
sion m(,del pr(,(l i( l ing lhe aml)ienl ()~ efl(,( l  on lhe 
Pn o1 (.!. mon~olicd leaves. Nel I)h()losynlh('l i( r ,  ll.t., 

P(Q, /') at a given PPFI) ((.2)and air lemp('r , | |ur( '  (I') 
can l)e, :al(:ulaled ,is Follows: 

I'(Q, I) -= t)t {1-EXP(fQ)~ - R~ (1) 

where t~, f and R i ar(, gross f)hot()synthelic rate 
) I �9 . t 

(~.llll()l Ill "S ). II~.'gClllV(' c()nslHnl ,in(l leaf resl)irati()n 
nile ff.lnl()l m ". i), respeclively 

In lh(, nl()(h'l wi lh ambient ( ) : ,  

I' ) n p (C,  I~ ( )  :. : {1-tXI)(-.2. }548(2)} - I?,~ (2) �9 , ,. ( ) ; � 9  

where (; is , inlbienl ( ) :  (()n((,nlratJ()n (pt)b) and 

h) eslinlale Ill(.) c( )n|ril)tllJ( )n ~)1 anli)i(~nl ()~ irl Ihe 
m,~:lel, Ih(,ir nl(~,in PI1 (liffer(,nc(., (P,u, I.Im()l m "s I) 
wa~, (,slim,ll(,(l usJng the nlea.~tlre(J (i,|la and (al('ulal- 
ing lh(,ir I"n (l i f leren(e (dl l l )elw(,(,n Ihe values (al('u- 
lah,(l in lhe m,~(l(,I wi lh aml)ienl O ;  bv Eq. (2) and 
Ill(. m()del wJlh()ul ambJenl ( ) , l ) y  Eq. (I). 

, H  - P((2,  I; - P((..), /~ (3  (:)) 

2 " 
),,,, :., { ( 1 1 ) / , 1 =  {~__.(1'((~./)../'((2. T. ( ) ) } m  (4) 

I I 

where n is Ill(, nunl l )er  i)f ()l)s('r\.-ations. 
I()r lh(.' inullil)le-regr(,ssi()n m~xh,I ~.~le(:l(~(t, the 

in(.an I)n di l f ( ,ence (B,I_,, l um~ m "s h was (~slinl,|N.~d 
I)y Ill(:' .~ull(. e(luali(,1 as I!q. (4), ,al(ulalimlg Iheir Pn 
(lifferen(:(, ((12) in Ill(, selecl(,d model wi lh aml)ienl 
( ) .  and lhe m()(lel rem()ving Ihe varial)le ()~ from Ihe 
~,el:,(:te(l mod(,i. l-he Pn dilf(,r(,n( o 1(-/2) rer)re~,nls ,1 
I)ll)p()rlk)n (fi lh(' ('()nlri|)tlli(,r~ h)lh(.' mullir)l(,-regres- 
~i()n m()del ~)1 amhienl ( ) ; .  Ir()rn the ab()ve lwo  
iltlm(,)i(;al ITl()('l{,Is, the nit,an Pn (lil l(,ren(es between 
Ill( m()dels wi lh an(I wilh()ul anlbienl ()~ were esli- 
indle(l I)y lh(, ,ll)()v() e(lLl,llJ()ns al ld then Iheir slall- 
(I,i,(-I err()rs an(I (()nf iden(e inler~ ah were eslimate(l 
I)y lh(' I)(~)tslra I) and the ja(kkrfil~, nlelh()ds (Muelh,r 
1()7(); Elr()n ILff}7; P()lVill and R()II; 199}). 
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R E S U L T S  

In measuring data during the study peri(xJ, the 
highest concentrations of TSP, O ~, SO 2, and NO 2 were 
41 I.tg/m ~, 67 ppb, 19 ppb and 62 ppb, respectively. 
The ranges of PPFD and T were 9--1487 Hm()l m 2S-I 
and 18.0-33.5"C, respectively. 

Table I shows linear correlation coefficients among 
Pn and the six predictor variables used in regression 
analysis. Higher correlations were found among con- 
centrations of TSP, SO 2 and NO, (P<0.()01), regard- 
less of values of logarithm or observation. Correlation 
between concentrations ()f O~ and NO_, was nol sig- 
nificant contrary to expectation, which may l~, due to 
time lag between their chemical responses in the 
atmosphere. TemD_~rature (T) highly c()rrelat(.~l with 
PPFD and SO 2. The Pn was highly correlated with 
PPFD and T (P<0.O01), bul was negatively (:orre- 
lated with O:~ concentrations (P<0.05). 

Table 2 shows multiple re.gression coefficients 
between the Pn and the six predictor variables. After 
logarithmic transformation to ensure a linear relation- 
ship, PPFD was integratc~ into the analysis. Logarith- 
mic transformation ()f the other variables did not 
significantly change the results, so lhese variables 

3.0 - -  - - 

W~riable O)efficienl SE P W[ 
Intercepl -10.618 2.372 0.001 0.000 
TSP ---0.0()] 0.005 0.518 3.771 
O~ --0.034 0.015 0.027 1.236 
SO~ 0.116 0.093 0.218 3.711 
NO. 0.011 0.020 0.592 1.876 
In(PPFD) 2.039 0.289 0.001 2.307 
T 0.191 0.114 0.100 2.659 
R 0.86I - 0.0()1 - 

were not transformed in the analysis. Coefficients of 
In(PPFD), T, SO, and NO_,, had positive values, but O 
and TSP had negative values. The multiple correlation 
coefficient was high (0.861) (P<0.001). However, 
coefficients between Pn and ] SP, SO, and NO 2 were 
not significant (P<0.05) anti so were removed from 
the regression model (Table 2). 

The VlFs of all variables did not exceed 10, but the 
smallest eigenvalue, 0.(50344 with (x)ndition number 
= 1728.015, reflects a dependeno/that is very dam- 
aging to the precision of coefficient estimates of 
regressors 1 and intercept and, to a smaller extent, to 
the coefficients of SO2 and In(PPFD) (Table 3). Clearly, 
this dependency heavily inw)lw~s these four regres- 
sors (Table 2). The impacl of the second smallest 
eigenvalue (0.01933) is marginal since the condition 
number is ]07.698. This dependeno/can be inter- 
preted as one that affects In(PPFD). Consequentl~ 
such dependency is very damaging to the precision of 
coefficienl estimates of T, intercept, In(PPFD) and SO,. 

Because of the multicollinearity in the multiple- 
regression m(~el as .seen in lable 3, ridge regression 
analysis was carried out using Ihe measured data. The 
change of estimates of regression coefficient as func- 
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Table 2. Multiple regression coefficienls belween Pn and the 
six predictor variables used in regression analysis (N=68). 
SE, P, VIF and R repre~nl slandard error, significance proba- 
bilit); variance inflation [aclor and multiple correlation coef- 
ficient, respectively: Abbreviations t)l lhe other variables are 
lhe .~ime as in Table I. 

-1.0 . . . . . .  i _ - . - I  . . . . . . . . . . . . . . . . . .  ) . . . . . . . . . . .  
0.00 0.02 0.04 0.06 0.08 0.10 

Ridge trace k 

F igure  1.  The  ridge trace f rom ridge regression. 

T a b l e  3. Collinearity diagnosti(~. Abbreviation~ of the variables are the same a.~ in Table 1. 

Condition Wlriance proportion 
Number Eigenvalue number Intercept TSP O~ SOs NC)_, In(PPFD) T 

1 5.94781 1.000 (I.0002 0.0022 (I.0053 0.0015 0.(503 () 0.0005 0.0002 
2 0.543(,2 10.941 (L0006 0.0480 0.1931 0.0136 0.0369 0.0012 0.0006 
3 0.27346 21.730 ( ) . ( )024 0.0199 0.4221 0.0073 0.1032 0.0143 0.(X)14 
4 0.15217 39.087 (1.()007 15.0617 0.1554 0.1140 0.5568 0.0012 0.0(/12 
5 0.06017 98.850 0.()000 0.7128 0.0243 0.43?,5 0.230() 0.0049 (5.0(545 
6 0.01933 307.698 ().2024 0.0027 l).1424 0.0( )01 0.0654 0.5329 0.0119 
7 0.0(5344 1728.0l 5 0.7936 0.1527 0.0574 0.4300 0.0032 0.4449 0.9802 
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Table 4. Multiph., regressi,,n I)elween I)n and th(. three i)re- 
dictor variable.,, u.,,e(I in regre~,sion analv.,,i.,, iN-. (,SL C(,efii- 
(ient.s are (,.~tim,lle(l I)y the lea.q-squllr(,~ melh~,(I. VII :: 
variar,.:e illllaliorl I,l('lor; /~: mLIIlil)l(' ~ ~rr,,lali()n ~, ,'ffi( ,('nh 
Abl)r(,viations ()lthe other ~arial)les ,ire the ~lm(, ,I.., in Tabl(, I. 

Variable (]~), tflicier~t ~,E 1' ~'71 

Inler('<'t)l -ds I .B.:;I tl.()()l 0.()(l(I 
(); .4).1)3'; ().()1 ~; ().(124 1.22(.t 
IrffPPl.Di 2. 189 ().247 { I.()() 1 1 .(,U6 

)" I O.1(){t (L()91 ( ... :14 1.(){~(I 

R I).853 - {I.001 -- 

lions of lhe ridge trace k fr()m 0 t() (). I is shown in Fig- 
ure I. Since the varial)les were stan(lardiz(,(l, 
(:oeffici(,nt aml)litu(le ,()uld l)e ((,~l~are(l ( l iredly 
M()sl c(,efficient egtimales stabilized quickly al ah()ul 
k=  0.()2. N() matter what the k value was, lhe slan- 
dardized (:(x~ffi~ienls (~f N() ,  an(l TSP kt,pl near (), 
while the (()eil'i(:ients ,)f ().., S(),, I and In(PPF[.)! 
were higher. In sele(ling m()del v, lriables f , )m lhis 
curve d"ig. I), Hocking (1976)l)r,~p()se(l lhal vari- 
ables wilh a coel'ficienl near zer() ,)r varying ral)idly 
with k .q~()uld l)e eliminat(,(l. |h is led us t() (,lira|hale 
NO_, and TSP and sele(t (){. SO,, I-and In(PI'FD). 

Forward stel)wise sele(ti()n ad(h,d In(PI)FD), (){ ,  
and T 1~ the m(,(lel one hv ,)ne, ,in~l then finally SO. 
and Stol)ped (labh' 4). W(, kepl II1(' sdn'le v,m,ibl(,s in 
forw, lrcl sel(,cti~ .~ ,is lh(.)~(, kept after ridge r(,gressi()n. 

However, th(, c(~effi(ienl between Pn an(I ~() ,  was 
not significant d . ' < 0 . 0 5 )  i lal)le 2 ) , i n d  S ( ) .  variable 
showed a posiliw, effe(~ 1<) Pn, ((,ntra~, 1(, ,'xtx,ct,i- 
li()n, thus, SO, variable wa~ elimin,lle(I and finally the 
mocl(,I m(.:lu(liil~ In(PPFI).L ( ) : ,  and [ a~ n,gre.,,,~or.~ 
was sel(,(~e(l. (he multipl(, (( )rrelal il )n coeffi( lenl w, ls 
().853 and sign|fie,rot (P<(L()()I). Th~s mo(lel ~ ()ul(l l}e 
comf)ared with the numeri(al m()(l(,l of Kim and Kim 
(1997) including the same variable.n. 

Pn = 2 . 1 8 9  In (PPFD!  4- ( ) .1()9 1 
�9 = (  ' -  : 68).  - ( ) .033 ( )~-8 .4( )8  (r ).d:~3, n 

For the sele(ted multiple-regressi()n m()(h'l (lable 
4), analvsis ()f residual wa,~ carried ,)ut Io delect and 
assess the degree of discr(,pan(y between lh,, II1()(.1('1 
assumed and lhe dala observed (Table 4). rhe 
[)urbin-Wals()n lest sh()we(l lhal lh(, Durl)in-Wals(~n 
statislic ,(;I = I .629) was c : l (~ '  It) '2 ,rod thu.,, the' residu- 
als did not have firsl-()rder aut(~correlali()n. A l)l(~t ()i 
residual againsl predided value in(Ikated a ran(l()m 
t)attern aroLirl(l zer(~ with n(.~ (iele(tal)le In'nd and 
Ihus Ih~' l()rn()gene()l.ls varian(:e a~sunlpli~)n ()f the 
residuals was accepted. ]he  Shapir( ,-Wilk stalistic ( W )  

Figure 2. 1 he ml,,li~ .~.qfit ) Ix,l~,~e~,n Ihu Pn ot)~.,rv(,(I ,rod the 
I',~ t)redMed h~. the mullij~)le-re~re~ou model I ) and nor- 
Itn~.ar n,gre~.q~ ,i~ model ( I ) .  Ih- diag~ ~nal line repre~,nl~ thai 
i~n.dMe(I value,, are e(lual h) ,)t)~e~xo(j ()nes. 

sh(,wed that die data could not reiecl the null 
hyl)(~lhesis ()f n0 )nn,dily and lhu.~ i~ 41owed the normal 
(listril)uti(,l. 

l igur(, 2 (.omp(ire.'~ both the I'll observed with the 
I.)n (alculate(t tr()m the tw() i)rediclive models, e.g. 
nlldlil)l(,-r(,gr(,~,~i()n model (lbhle 4, arid il()n-line,lr 
mgressi()n m(J(lel (Kim and Kin1, 1997}. By the I-tesl 
,,n the null hvl,,theses th,lt lhe ()l)~rved values an(J 
lh{. l)r~,di(led \..flues in each (~I Iv~() models were the 
~ame, lhe llull hyl)()lhe~,.~ were n()l reied~l {P< 
( ).(,9() in the m~ dl il)le-regr(,s.q( ,~ n lod(,l and I~<:0.337 
e,l :11(' non-lin-,ir regression m,)(lel!. 

l h(. mean l'n diff(,ren('e (H.I,)')I !he multiple-regres- 
si(in rno(l('l 4eh,ch.,(l above il;.(Ide 4) was (()mp, lred 
with those ,l.ld ~ (~f lhe n,,1-1inear regressi()n n1(xlel 
in( lu(ling the same varial)le.~ ILv Kim an(l Kim (1997), 
in ,~r(ler I() verily lhe efied ()I aml.)~ent ( )  ,. ()n Pn ()f (2. 
m(,nqr)lic,~ h..,,l\e.~ in the m(~(h,I. Their ix,r(ent Pn 
redu(ti()n an(I mean Pn (lifl~,,r('n(e.,, were eslimate(I 
I)y the e(luati,~n~ ref~,rre(t h~ in Ill(' M(,lh()ds se(ti()n 
( lal)le 3). 

I he mean Pn difference in thu n,)n-linear regression 
m~,del (Hd~ ~ (t-.~'l('l I - Im()l m 's ) for the original data 
wa~ ,malh~r ll,,in (hal of lhe mullil)le-regre.~si()rl model 
ip.., :: 0.80(, I.tm()l m 'sb, l h e  (~,nlribulion ,~1 ambi- 
I ' l l i  (.): I ( ) the  multiple-regression ,n,)d('l and non- l in-  
,,,ll regress~(,~ m(~del w,l~ 12.6% an(l 5.6%, 
reH)e(livl,ly. Mi,anwhile, i0r  the (..,-;timatos f rom small 
,,anlple size ()f the i)l)sel%,e(l (I,II,~ (11----'t')8), Ihe hool- 
.,lrnp pr()(e(iur- was u~( I  I { ) ( i u , i n l i f y  the precision 
an, I I() (alculale (:()nfiden(e inl(,t~'als for Ihe (lifter- 
un~es  b e l w ( , e n  Ih(' 1w() me, in I)n values. Using 1000 
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Table 5. The sample mean Pn difl'erences (la,), the mean Pn differences (I J) by the l~)otstrap and the jackknife procedures, their 
standard errors, and the confidence intervals by the accelerated boolstrap method in non-linear regression and multiple-regres- 
sion models, SE represents slandard error. ]-he number of l~x~Islrap repli(~tes i~ 1,000. 

Model Sample mean The bootstrap llle jackknife. Confidence interval 
type ~, Mean ~t ,~E Mean I J SE Lower limit Upper limit 

Non-linear regression 0.319 0,319 t).I)66 0..}I 9 0,(X)9 (}.212 0.477 
Multiple regression 0.806 (}.809 0.a)74 l).8(}6 O.(X)9 0.665 0.954 

Figure 3. Frequency distribution ol ~ I,(100 Ix)otstrap values 
for Pn differences between the m~|els with and without O 
in the non-linear regression m(xlel iabove) and multiple- 
regression model (below). Arrow represen~ mean of 1,000 
|xx~tstrap differences in each model. 

bootstrap samples, the mean differences in the non- 
linear regression model and multiple-regression 
model were 0.319 and 0.809 IJmol m 's 't, and the 
biams in each model were estimated to be 0.000 and 
0.003, respectively, small in both cases. Using the 
jackknife samples, the mean differences were 0.319 
and 0.806 lamol m--'s -I, respectively, being equal to 
the sample mean differences. 

1"he standard errors of the mean Pn difference were 
estimated by both procedures of bootstrap and jack- 
knife procedures (Table 5). Using 1000 bootstrap 
samples, the estimated standard errors for mean dif- 
ferences of the non-linear regression model and the 
multiple-regression mcx:lel were 0.066 and 0.074, 
resixectively. In the jackknife .~lmples, lhe standard 

Figure 4. Changes of mean Pn difference (%) of Q. mongol- 
ica leaw~s as a consequence of <hanges of 0 ~ concentrations 
in the multiple-regression m~xlel and non-linear regression 
model. 

errors were (.}.009 and 0.009, respectively. 
The percentile method used the 2.5 and 97.5 per- 

centiles of bc~tstrap distribution as the limits of a 95% 
confidence interval, while the accelerated bootstrap 
method adjusted the percentile bootstrap for bias and 
skewness, the percentile b~lstrap distribution of the 
mean difference in the non-linear regression model 
showed skewness to the right (Fig. 3). To correc'[ for 
the skewed sample distribution, the accelerated boot- 
strap method for confidenc:e interval of mean differ- 
ence was used (Table 5). The acceleratod confidence 
intervals in 1000 bootstrap replk~ltes ranged from 
(}.212 to 0.477 in the non-linear regression model and 
from 0.665 to 0.954 in the multiple-regression model. 

To simulate the effect of O~ c.oncentration on Q. 
mongolica leaves in urban areas the change of mean 
Pn difference was investigated, assigning the mea- 
sured data of O~ concentration ,-Ls the 100% value 
and increasing variables multiplication fador (VMF) in 
()~ concentration (Fig. 4). For each model, O~ con- 
centrations increased from ().5 to 2.0 times. 

In the non-linear regression model, the mean differ- 
ence increased non-linearly as O~ concentration 
increased; it was higher lhan the reference value 
when VMF was -'-" I and lower than the reference 
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value when VMF was ~"1. In the multiple-regression 
model, lhe mean Pn difference in(:r4,ased linearly as 
()~ cx]n(entrati()n inc'rea~,d; it was h)wer than the ref- 
erence value when VMI: was ." 1.t). but higher than 
the reference value when VMF was ~1. 

Discuss ion  

The multiple-regression too(tel wa.,. deveh)l)('d using 
climatic and anthropogenic facto~ affecting Pn and 
compared wilh the non-linear regr(..'ssi~)n model used 
by Kim and Kim (1997). In the ((~rrelati(,~ analvsi.~ 
between Pn and Ihe four air t.x)llutanls and/'(,r tw4~ ( li- 
matic fa4 tors, Pn was highly correlated with PPFD and 
T, but was negalively correlated only with ( ) ;  ( oncen- 
trations. In multiple-regression, PPfD, ]~ St)., and 
NO, variables had p()siliw, ('()el'licienls, bul Ihose of 
O,. and rSP had negative. 1he same In(PPFDI, O ~, T 
and SO.. w)riables in the multiple-regressi(~n model 
were ~lec.ted hy lorwar(I ,~,leclion and ridge regres- 
sion. Photosyntheti(: capa(:ity ()f O.. mongo//,a Irees 
was primarily a fun(:lion ()i PPFD, I; aml]ienl O~ an(l 
SO, c()n, :entrati4)n in Se4)ul, K4)rea. 

It is suggested lhat a higher level of 50 ,  (oncentra- 
lion in winter may direclly injure evergreen conifer 
species (~r may have an m(lire(t effe(l lhrough lhe soil 
()n planl~, whereas a lower level ()f S(), cont.enlrati()n 
in summer may not damage plants (Ibmlii~son II, 
1983; Plinz and Bran(ll, 1985). In lh~s study, lhe high- 
est S() 2 con(:enlralion w.as I 9 pph, whi('h is l)rol]ably 
t(x) I()w to cause Q. mo~L~oli(a leaves t() (lamage. 
Also, the S(), variable in the n)ultiple.-regressi()n 
mcxJel in Table 2 showed a positive elfe(l on Pn, n()l 
negalive. Thus, we used the m(~del including 
In(PPFD~, O v and f as regress()rs, removing lhe vari- 
able SO. (Table 4). The resulLs are (:()nsistenl with lhe 
previous work in the ..~m]e l4~rest sland (Kin] and Kim, 
!995, 1997), and support the hyp(~thesis thal shod- 
lerm, low O~ c4)ncentralion exposures lead 14~ photo- 
synthesis ()r g r ( ~ h  re(lu(lion of l)lant (Yang et al., 
1983; Rei(:h an(l Amundson 1984, I(.~85; Reich an(l 
Lassoie, I(.)85). 

The non-linear regre~i4,~ model expres~:'d a.~ a 
lype ()f power lun(tions in previous w(~rks of Kim an(l 
Kim (19~17) was (:ompared wilh the sele(le(l multiple- 
regrc~si()n model. The mean Pn different e in the n()n- 
linear regression model (Pd, = 0.319 pmol m ~s ~)was 
smaller than thal ()f the rnultiple-regmssi()n model 
(P,I: = 0.806 l.tmol m "s ~) l()r the 4~riginal data. Io 
assess the precision of the two mean Pn (liffemn(es, 
the bootstrap and the jackknife l)r4x'edures were used 

(I.fr,~n, 1987L When using the b,x)tstrap and jack- 
knife procedur4,s in the two models, the bia.~ of 
mean Pn difleren(:e and lheir estimated standard 
ern ~ for earl3 model were yen,. small. This indicate~ 
thai Ihe number of ob~rvalion~ l,~r Ihe two models 
wa~. ~,ufficienl I,~ estimate m4.,an Pn difference and 
their e~timated slandard errors in each model. 1-he 
per~entile Ix~(~l~tra t) (iistrihuli(~n ol the Pn (:lifleren(x ~ 
in Ihe n( )n-li n(',u r~,gressi()n m~ )(h,I sh~)wed skewnes.,, 
t4) Ihe right. lh(. range of Ihe b(, ~tstrap (listribulion ol' 
Pn difference I-~,tween the lw~ m~ ~dels (.lid not (wer- 
I, O This indkales lhat the lw,~ m4)dels may be u.~'(l 
in (lualitalive ,)i quantitative as.~,ssment of the effect 
(,f,dr l)ollutanl ,,n plant resp4)nse. 

1,) simul,~te lhe eflect of (),, c()n(enlration on Q. 
m4),1~(~li(.a leaw,s in urban are, L~ we increased ()~ 
(on(:entrali<)n lr4~m 0.5 It) 2.0 limes. In the non-lin- 
ear regression m()del, the mean difference increa.~,(I 
n~)tv-linearly wilh an in(:rease 4)1 (.) : c()ncentration. In 
Ihe multiple-regression model, Ih4, mean difference 
in(leased linearly with an increase of O ~ concentra- 
tic,~ as expe(te(I. The mean Pn (lillerence in the non- 
linear regres.~ion model wa.~ 150% higher than that of 
lh(, multiple-regression model when lhe variable mt,I- 
tiph(:ati(]n Ia( 14)r (VMF) was m()r(, lhan 1. 

the advantage ()f the., multil)l~,-regression model 
al]l~lied in this slu(ly was thal it (4,uld verify the effect~ 
of .fir p4~llutanls using the (lata 4d" ecol;hysiological 
exl~eriment in silu. Howe\,e~: sever, d problems should 
l)e ensured Ix4,)re the slarl ()f an experin~ent. First, 
lit(, PI)FD as a <lelxmdenl vari, d~le in field exl~ri- 
met)l is the l])Os[ important limiling la(lor on Pn 
n,sl)onse. It should be considered that lhe measure- 
n)('nts (d Pn ,eslx~nses in situ are evenly made 
hetween lighl (,)mpensati4)n point and the ~turate(l 
PPI I.) ac(ording t(~ the relali()nslfi I) between light an(l 
ph(,tosynthesis 4)f eat h planl spe(:i(,s. Second, the sta- 
tisti,.:al assumptions should be 4()nsidered. The collec- 
tion oi: continu4~us hourly average (lata may cause the 
pr~l)lem 4~f aut~c()rrelation (~I the data. In this study, 
in 4,rder t(~ aw,d such pr(~blem, measure.ments were 
ma(le al monthly inlervals during growlh period and 
the dala were ~elected al ran(h)n). Third, the dail~; 
s~.,a~onal and annual varialion.~ and dislributions of air 
pollutants .should he considere(l. Krupa and Kinkerl 
(1987~ l]ointed out that in the m4mitoring of hourly 
aw,rage ambient 50 .  con(entrati4)ns, SO_, (:(]ncentra- 
t i()~,s were reporled io l)e zer4~ (luring approximately 
9()'!;, (d the m(,dlored perio(l. ]he daily and seasonal 
~ariations 4)I daily 1-h ma• ()~ con('entrafiol] 
were rep()rted (Krupa et al., I')(~5; Kim and Kim, 
19'.~7). Theref,)re, if worker.,, ar(, to measure Pn of 
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leaves during periods of low concentrations of air pol- 
lutants, they cannot detect the effec~ of air pollutants. 
Fourth, a variation of leaf status such as leaf age, leaf 
location in the canopy or leaf water stress leads to no 
detection of the effe(g of air pollutant so that leaf sta- 
tus must be monitored during the measurement 
period. Thus, multiple-regression model is only appli- 
cable after the various conditions are suilably consid- 
ered. 

In conclusion, the results indicate that a multiple- 
regression model (;an be applicable to the qualitative 
or quantitative assessment of the effect of air pollut- 
ants on Pn response of plant leaves in situ. Also, the 
assessment of ecological effects using two kinds of 
numerical models, non-linear regression models and 
multiple-regression models, will have a degree of 
uncertainty associated with the measuring time of 
data used in the modelling, as well as with the numer- 
ical structure of the mCxlel. 
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